- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Schilling, Anne (2)
-
Simone, Mary_Claire (2)
-
Johnston, Lisa (1)
-
Kenepp, David (1)
-
Nguyen, Evuilynn (1)
-
Pappe, Joseph (1)
-
Paul, Digjoy (1)
-
Pfannerer, Stephan (1)
-
Zhou, Regina (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We introduce the immersion poset$$({\mathcal {P}}(n), \leqslant _I)$$ on partitions, defined by$$\lambda \leqslant _I \mu $$ if and only if$$s_\mu (x_1, \ldots , x_N) - s_\lambda (x_1, \ldots , x_N)$$ is monomial-positive. Relations in the immersion poset determine when irreducible polynomial representations of$$GL_N({\mathbb {C}})$$ form an immersion pair, as defined by Prasad and Raghunathan [7]. We develop injections$$\textsf{SSYT}(\lambda , \nu ) \hookrightarrow \textsf{SSYT}(\mu , \nu )$$ on semistandard Young tableaux given constraints on the shape of$$\lambda $$ , and present results on immersion relations among hook and two column partitions. The standard immersion poset$$({\mathcal {P}}(n), \leqslant _{std})$$ is a refinement of the immersion poset, defined by$$\lambda \leqslant _{std} \mu $$ if and only if$$\lambda \leqslant _D \mu $$ in dominance order and$$f^\lambda \leqslant f^\mu $$ , where$$f^\nu $$ is the number of standard Young tableaux of shape$$\nu $$ . We classify maximal elements of certain shapes in the standard immersion poset using the hook length formula. Finally, we prove Schur-positivity of power sum symmetric functions on conjectured lower intervals in the immersion poset, addressing questions posed by Sundaram [12].more » « less
-
Pappe, Joseph; Pfannerer, Stephan; Schilling, Anne; Simone, Mary_Claire (, Seminaire Lotharingien de Combinatoire)We construct an injection from the set of r-fans of Dyck paths of length n into the set of chord diagrams on [n] that intertwines promotion and rotation. This is done in two different ways, namely as fillings of promotion matrices and in terms of Fomin growth diagrams. Our analysis uses the fact that r-fans of Dyck paths can be viewed as highest weight elements of weight zero in crystals of type Br, which in turn can be analyzed using virtual crystals. On the level of Fomin growth diagrams, the virtualization process corresponds to the Roby–Krattenthaler blow up construction. Our construction generalizes to vacillating tableaux as well. We give a cyclic sieving phenomenon on r-fans of Dyck paths using the promotion action.more » « less
An official website of the United States government

Full Text Available